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Thermoelectric Phenomena
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Thermoelectric Phenomena
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• In general:
• σ increases, S decreases
• σ increases, κ increases 

• σ : Electrical conductivity
• S : Seebeck coefficient
• σS2: Power factor
• κ : Thermal conductivity

Thermoelectric Figure of Merit
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State-of-the-Art ZT Values

Wright, D.A. Metallurgical Reviews 15, 147 (1970)

Z

Temperature (°C)

ZT=1

ZT=2

ZT in 1970 ZT in 2008

Snyder, G. et al. Nature Mater. 7, 105-114 (2008)

Best room temperature 
thermoelectric materials: Bi2Te3-

and Sb2Te3-related



Laser diodesCPU
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Car seats Wine coolers

Refrigeration Applications



Galileo (1989-?)

Power Generation Applications

Voyager (1977-?)

Mars Rover Curiosity (2011-?)

In Space On Earth

Marlow PowerStrap



Power Generation Applications: The Internet of Things
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Problem: Continuously growing market 
of small wireless devices and sensors 
require power
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Power Generation Applications: The Internet of Things
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Problem: Continuously growing market 
of small wireless devices and sensors 
require power

Solution: Energy harvesting
Generating small amounts of power from external, 
otherwise wasted sources

IoT

Environmental Body-worn

Infrastructure Industrial
Vibration

WindSolar

HeatHeat

Thermoelectric 
energy harvesting!
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Chip-Scale Thermoelectric Energy Harvesting

vs

– Large device area 
– Expensive
– Bulk processing: Low number 

of TE legs 
– Low device thermal resistance
– Low output voltage

Bulk TEG Chip-scale TEG
– Small device area (10mm2)
– Low-cost
– Microfabrication: Hundreds to thousands 

of TE legs
– High device thermal resistance: Optimize 
ΔT captured

– High output voltage: Maximize efficiency 
of power management
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►Design parameters:
 Total device area
 Substrate material and thickness
 TE materials
 Interconnect materials
 TE element height
 TE element area
 Number of TE elements (fill factor)
 Filler material

►Device characteristics:
 Electrical resistance
 Thermal resistance
 Output voltage (device Seebeck)
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Design of Chip-Scale TEGs
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Modeling of Chip-Scale TEGs

Complete TEG



Modeling of Chip-Scale TEGs

Dunham, et al., 2015, Energy

Simplify thermal and 
electrical systems:      
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1D thermal 
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Complete TEG
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Simplified 

electrical circuit



Modeling of Chip-Scale TEGs

Dunham, et al., 2015, Energy

Simplify thermal and 
electrical systems:      

Single Thermocouple

1D thermal 
resistor network

Complete TEG

Performance Matrix

Excellent 1st approximation for 
expected device performance
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electrical circuit

Change leg length

Change filler
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Modeling of Chip-Scale TEGs
Using 3D finite elemental analysis software

Complete TEG

Simplify thermal and electrical systems: Single Thermocouple

3D FEA Modeling (COMSOL)
• Fine-tune device performance
• Explore 3D adjustments to geometry
• Elucidate problem areas



Important Design Constraint
Thermal resistance of TEG
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Important Design Constraint
Thermal resistance of TEG
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Important Design Constraint
Thermal resistance of TEG
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** Max power will shift to lower 

device resistances with inclusion of 
Peltier, Joule effects **



Representative Values for Rh, Rc

23

?

Heat source

Heat sink

?

Metal-to-metal 
contact with thermal 
adhesive or grease: 

~1 K/W

Aluminum heat fin 
array, ~20cm2 with 

natural convection: 
~10 K/W 

Skin
Th~37°C

Skin contact w/ 4cm 
diameter watch face: 

~50 K/W 

Contact via heat pipe 
to thermal mass:  

?? K/W       
(depends highly on 
materials and time-

dependent temperatures)
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ADI Chip-Scale Thermoelectric Generator (TEG)
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In-house 8” wafer 
processing

► Leveraging ADI manufacturing and 
processing know-how to build high-
performance, low-cost devices
– Target: 400μW from ΔT=10°C

– Chip-scale device area: ~10mm2

– Active materials: Based on Bi2Te3
– Make use of ADI-patented device 

architecture: TE materials deposited 
along polyimide slope 

– Long leg length, large thermal 
resistance without time-consuming, 
expensive depositions
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► Leveraging ADI manufacturing and 
processing know-how to build high-
performance, low-cost devices
– Target: 400μW from ΔT=10°C

– Chip-scale device area: ~10mm2

– Active materials: Based on Bi2Te3
– Make use of ADI-patented device 

architecture: TE materials deposited 
along polyimide slope 

– Long leg length, large thermal resistance 
without time-consuming, expensive 
depositions

Optimized to power wireless sensor 
nodes and other small devices from 

thermal energy sources close to room 
temperature



Process Flow for ADI Chip-Scale TEG
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a. Plating of interconnect

b. Polyimide deposition

c. Lift-off resist litho

d. Bi2Te3 (Sb2Te3) deposition

e. Lift-off

f. Plating resist litho

g. Plating of bond materials

h. Wafer-level bond

i. Singulation and dicing



Process Flow for ADI Chip-Scale TEG

29
Analog Devices Confidential Information—Not for External Distribution
©2017 Analog Devices, Inc. All rights reserved.

a. Plating of interconnect

b. Polyimide deposition

c. Lift-off resist litho

d. Bi2Te3 (Sb2Te3) deposition

e. Lift-off

f. Plating resist litho

g. Plating of bond materials

h. Wafer-level bond

i. Singulation and dicing



Projected Performance of ADI Chip-Scale TEG

► ADI TEGs predicted to have better performance (higher voltage and 
higher output power) than competitor
 Measured output voltage already surpasses Micropelt
 Resistance and power output improvements ongoing

► Schedule for sampling:
 1st gen. prototypes: Completed May 2017
 Customer sampling: Summer 2018

Performance compared with:

micropelt
TGP-651
• Bi2Te3-based
• 3mm x 3mm

ADI TEG
Projected 

performance
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TEG-Powered CbM Sensor Node
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Power management
ADP5092

Super-cap

Processor
ADuCM3029

Wake-Up 
XL

ADXL362

XL
ADXL355

Temp sensor
ADT7302

Radio 
module

DA14580

TEG

 components
 ADuCM3029 microcontroller: SPI, I2C, UART interfaces
 Ultra-low power ADP5092 power management
 Low power vibration (ADXL263, ADXL355) and 

temperature (ADT7032) sensors

Super-cap

ADXL355

ADP5092

ADT7302

Slot for TEG
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TEG-Powered CbM Sensor Node
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TEG-Powered CbM Sensor Node
Average Power Consumption 
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Update
rate

DA14580
BLE

ADuCM3029
uC

ADXL355
XL

ADXL362
Wake-up

ADT7302
Temp Total

30 sec 172 16.1 5.56 4.89 0.24 199

30 min 5.82 0.433 0.093 5.39 0.004 11.7
Average power in µW

 Data updates every 30 sec: Power 
consumption dominated by transmission

 Data updates every 30 min: Wake-up XL 
power consumption comparable to BLE

ΔT ~ 10°C

ΔT ~ 2°C



Thermal Breakdown
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Heat fin

TEG

PCB and plastic housing not shown

?

Heat source

Heat sink

?



Thermal Breakdown
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Magnet

Conductive 
die attach

Heat fin

TEG
Thermal paste

Parallel heat 
path: Nylon 

standoffs and 
screws

PCB and plastic housing not shown

Design Requirements
• Minimize thermal resistance 

(TR) in series with TEG
• Maximize TR in parallel with 

TEG
• For best performance, match 

TRTEG to TRexternal

TR
ex

te
rn

al

TRTEG

35°C

32°

29°

Modeled Temperature Profile
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Summary

► Introduction to thermoelectricity
– Make use of fundamental materials property
– Can be used to heat/cool (input current) or to generate power (input ΔT)
– Device efficiency related to TE material ZT

► Thermoelectric energy harvesting: Chip-scale technology offers significant advantages over 
typical bulk solutions

► TEG design and modeling
– A lot can be learned from simple 1D models
– Key device design requirement: Thermal impedance matching

► ADI chip-scale TEG
– Based on patented device architecture: TE material deposited along polyimide slope
– Large thermal resistance: Optimized for harvesting small amounts of energy from sources close to 

room temperature
► Condition-based monitoring sensor node: Smart sensing powered by TEG

– technology covers entire signal chain
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