

MEMS Energy Harvesting & Conversion Devices enabled by patterned Super-magnets leading to Internet of Things (IoT)

Prof. Saibal Roy

Research Professor – Physics Department National University of Ireland- University College Cork (UCC) A S Paintal Chair Professor of Engineering - INSA Head: Micropower Devices and Nanomagnetics Group Tyndall National Institute, Cork, Ireland Email: Saibal.roy@Tyndall.ie

> EnerHarv 2022 Raleigh, Durham, USA, 5-7 April 2022

Outline

Powering IoT – Vibration (mechanical) Energy Harvesting (VEH)

Electromagnetic (EM) Vibration Energy Harvesters Linear (narrowband) to Nonlinear (wideband)

Scaling Issues of EM-VEH Devices: MESO to MEMS scale – Challenges and Roadmaps

- Power conversion Employing Micro-Nano-Magnetics
- Roadmap and Future Directions

Powering IoT - Vibration (mechanical) Energy Harvesting

Internet of Things (IoT) & Energy Harvesting

Internet of Things (IoT) – Wireless sensors/nodes connecting things / devices to internet

Farhan et al., Energy Efficiency for Green Internet of Things (IoT) Networks: A survey, Network 2021, 1, 279-314

0

Batteries

Not suitable for

'fit-and-forget' Applications! Costs? Pollutions?

Vibration Energy Harvesting (VEH)

Mechanical energy is most easily accessible – Ambient Vibrations Low amplitude vibrations can be found in every sphere of life – Huge Opportunity

Different Transduction Methods

Comparison of Different Transduction Methods

Electrostatic	Piezoelectric	Electromagnetic
 Based on changing capacitances of the charged plates. The voltage will change as the capacitance changes. 	 Charge displacement occurs when the material is strained. Thus a potential difference is obtained. 	 Based on the Faraday's Law of Induction. When a conductor moves through a magnetic field, a potential difference is induced.
3 mm		
 Suitable for MEMS Low o/p voltage at high operational voltage 	 Active materials for fabrication, brittle. High Voltage, Low Current 	 Do not need any extra component. High Current, Low Voltage
High impedance values	High Impedance values	Challenging in MEMS

Inertial Energy Harvesting System

Second Order Spring Mass Damper System $m\ddot{x}(t) + (c_m + c_e)\dot{x}(t) + kx(t) = -m\ddot{y}(t)$

Power dissipated in the electrical damper
$$P_{elec} = \frac{c_e (\frac{\omega}{\omega_n})^3 Y_0^2 \omega^3}{2\omega_n [\{2\rho_T \left(\frac{\omega}{\omega_n}\right)\}^2 + \{1 - (\frac{\omega}{\omega_n})^2\}^2]}$$

At Resonance:

$$P_{elec}|_{\omega=\omega_n} = \frac{c_e m^2 Y_0^2 \omega_n^4}{2(c_m + c_e)^2}$$

Inertial Energy Harvesting System

Principle governing EM generators is Faraday's Law

Electromagnetic (EM) VEH: Linear (narrowband) to Nonlinear (wideband)

Commercially Available EM VEHs

EnOcean Light Switch

- Energy output 120-210 µJ at 2V
- Dimension: 29 X 19 X 7 mm³
- Application: Wireless Light Switch

- Bulky weigh 1.03 kg
- 4.2 mW, 8V, 0.525 mA @0.05g
- Applications: Railroad, Industrial monitoring

ReVibe Energy Harvester

- modelD: 61 mm (height) x 32 mm (diameter)
- 2 mW @ 60 Hz and 0.1g
- Application: Industrial monitoring

Remarks:

- Majority of them are bulky, heavy systems
- Most commercial products are linear or single frequency
- Focuses on structural, infrastructure and industrial monitoring applications
- Need for miniaturization is clear

Macro/Mesoscale EM VEHs – SOA in literature

S. P. Beeby et al., J. Micromech. Microeng., 17, 1257 (2007)

- Volume 0.15 cm³
- Power 0.046 mW @ 0.06g
- Frequency 52 Hz

V. Nico et al., Appl. Phys. Lett., 108, 013902 (2016)

- Volume 12.1 cm³
- Power 2.75 mW @ 0.4g
- Frequency 11.25 Hz

H. Kulah, H. Najafi., IEEE Sens., 8(3), 261 (2008)

- Volume 0.3 cm³
- Power 120 μW @ 1g
- Frequency 64 Hz

D. Mallick, S. Roy, Sens. Act. A, 226, 154 (2015)

- Volume 2.65 cm³
- Power 0.5 mW @ 0.3g
- Frequency 58.6 Hz
- Volume 0.1 cm³ to higher
- Discrete components assembled together Fine machining
- Magnet array to increase flux density
- Lower Frequencies Application relevant
- Reasonable Power Density

Magnetic Flux Distribution

Suitable Magnet Coil Arrangement – High Power Generation

12

Halbach Array

D. Zhu et al., Smart Mater. Struc., 21(7), 075020 (2012)

Closed Magnetic Circuit

D. Mallick, S. Roy et al., Smart Mater. Struc., 24(12), 122001 (2015)

Alternate Oppositely Polarized Magnets

S. Roundy, E. Takahashi, Sens. Act. A: Phys., 195, 98 (2013)

Double Cell Configuration

A. Marin et al., J. Phys. D: Appl. Phys. 44, 295501 (2011)

Vibration Sources – low frequency

Resonant, Impulse, Shock

Broadband, Random, Noise

2

Displacement

Nonlinear Energy Harvesting

Nonlinearity introduced through modified stiffness of the devices \rightarrow broader frequency response

Miniaturized Nonlinear EMPG Systems

Mono-stable Nonlinear EMPG

- Mono-stable nonlinearity from stretching strain in addition to bending of fixed-guided beams.
- 0.5 mW of peak power under 0.5g acceleration

Bi-stable Nonlinear EMPG

- Bi-stable nonlinearity from magnetic repulsive interaction.
- <u>29μW</u> of power under **0.5g** acceleration.
- D Mallick, A Amann, S Roy; Smart Materials and Structures 24, 015013, (2014)
- S Roy, P Podder, D Mallick; IEEE Magnetics Letters 7, 1-4, (2015)

Combined bistable-quartic nonlinearity- Meso scale

Stretching of the clamped-guided pair of beams contributes to mono-stable cubic nonlinearity

- Bi-stable nonlinearity is incorporated by the repulsive magnetic force at the tip of the cantilever
- \square 1403 µW of power at 1g

Podder, D Mallick, A Amann, S Roy; Scientific Reports; 6, 37292, (2016)

S Roy, P Podder, D Mallick, A Amman; Patent granted – EP 3311472, Jan 2020; US 10971986B2, April 2021

Electromagnetic (EM) VEH: Meso to MEMS Scale

MEMS-scale EM VEHs – SOA in literature

D. Mallick et al., J. Microelectromech. Syst., 26(1), 273 (2016)

- Volume 0.1 cm³
- Power 2.8 μW @ 0.5g
- Frequency 630 Hz

H. Liu et al., Appl. Phys. Lett., 104, 053901 (2014)

- Volume 0.16 cm³
- Power 0.06 nW @ 1g
- Frequency 384 Hz

M. Han et al., Sens. Act. A: Phys., 219, 38 (2014)

- Volume 67.5 mm³
- Power 10 nW @ 1g
- Frequency 48 Hz

S. Kulkarni et al., Sens. Act. A: Phys., 145, 336 (2008)

- Volume 0.1 cm³
- Power 23 nW @ 1g
- Frequency 9830 Hz
- MEMS micro-scale features
- Semi (most) or Fully (few) batch-fabricated
- Si or non-Si (PDMS, electroplated Ni) suspension systems
- Bulk Magnets

Benchmarking the MEMS EM VEHs

Scaling remains the main issue

MEMS reduces cost

20

Scaling Issues of EM VEH Devices: Challenges and Roadmaps

Scaling of EM VEHs

Maximum load power generated by a EM Generator at resonance for matched load

$$P_{L} = \frac{m^{2}a_{0}^{2}}{8c_{m}(\frac{R_{C}c_{m}}{\gamma^{2}} + 1)}$$
Where, $\gamma = N \frac{d\varphi}{dx}$ is the electromagnetic coupling

$$\boxed{m \propto L^{3}}$$

$$c_{m} \propto L$$

$$\gamma \propto L$$

$$\gamma \propto L$$

$$R_{c} \propto L^{-1}$$

$$\gamma^{2}/R_{c} \propto L^{3}$$
Two asymptotic scaling laws
can be obtained:

$$P_{L} \propto L^{5}a_{0}^{2} \text{ For } L \rightarrow \infty$$

$$P_{L} \propto L^{7}a_{0}^{2} \text{ For } L \rightarrow \infty$$

$$P_{L} \propto L^{7}a_{0}^{2} \text{ For } L \rightarrow 0$$
D. P. Arnold, IEEE Trans Magn., 43(11), 3940 (2007)

Scaling of EM VEHs (II)

Micro-fabricated Coils in EM-VEH

Single/Multi-layer micro-coils

Electroplated Single Layer Copper Coil¹

- 20 Turns,
- 3.6 Ω,
- 22 μm thickness

Sputtered Double Layer Cr/Au Coil³

- 57 Turns,
- 12.7 kΩ,
- 30/30width/spacing, 350 nm thickness

Electroplated Double Layer Copper Coil²

- 144 Turns,
- 190 Ω,
- 10 µm track width, spacing, thickness
- Sputtered Al, Cr/Au coils very thin, high resistance
- Electrodeposited Cu coils thick, low resistance, low cost
 - 1. Q. Zhang, E. S. Kim, Proc. IEEE, 102(11), 1747 (2014)
 - 2. D. Mallick et al., J. Microelectromech. Syst., 26(1), 273 (2016)
 - 3. K. Tao et al., J. Micromech. Microeng., 26, 035020 (2016)

Roadmap for Micro-fabricated Coils

Improving the packing density:

- Parylene conformally coated ^I high density coil¹
- Doubles the number of turns
- Complex fabrication process
- **Concern:** dielectric breaking electrical short circuit

MEMS compatible 3D coil⁴:

- Wire-bonded
- 3D solenoid structure
- Number of windings is limited by the post height

- Increasing the stack height²
- Increasing the aspect ratio (AR=w/h)
- Using standard lithography, it is possible to develop as high AR as 1:17 and 5 µm resolution³

F. Herrault et al., J. Micoelectromech. Syst., 19(6), 1277 (2010)
 C. Ruffert, H. H. Gatzen, Microsyst. Technol., 14, 1589 (2008)
 R. Anthony et al., J. Micromech. Microeng. 26, 105012 (2016)
 K. Kratt et al., J. Micromech. Microeng., 20, 015021 (2010)

Integrated Permanent Magnets

Key Challenge: Permanent Magnet Integration

• Barrier in batch fabrication

- 1. X. Dai et al., Appl. Phys. Lett., 100:031902 (2012).
- 2. H. Liu et al., IEEE J. Microelectromech. Syst. 23(3): 740-49 (2014).
- 3. H. Liu et al., J. Micromech. Microeng. 22:125020 (2012).

Material Challenges

State-of-the-art Permanent Magnet Materials

- Rare Earth Magnets High Temperature processing as such Not MEMS compatible
- CoPt/FePt L₁₀ phase CMOS compatible deposition High temperature (700°C) annealing
- CoPtP/CoNiMnP/CoNiReP Co hcp phase can become hard magnetic at room temperature

Integrated Permanent Magnet Development

Electrodeposition – low cost, high deposition rate

Pulse Reverse Plating (PRP) of CoPtP Permanent Magnets – Low Stress

Optimized PRP Plated Film Room Temp., 20/10 mA/cm²

D. Mallick, K Paul, T Maity, S Roy, J. Appl. Phys.125, 023902, (2019)

Design Challenge – Integration of PM

- The internal field H acting in a sample $H = H_{ext} + H_d$ H_{ext} - External field
 - H_d Demagnetization field generated in the sample
- The demagnetization field $(H_d = -DM)$ act to demagnetize the magnet in opposite to the magnetization direction
- Free magnetic poles at the terminating ends of the magnet
- Strength dependent on the magnetization and the physical magnet shape

Motivation: Development and optimization of patterned magnetic micro-structures with next-generation material that shows superior hard magnetic properties.

Integration in MEMS EM VEH Structure

Finite Element Study on Magnetic Patterned Structures

D. Mallick, K Paul, T Maity, S Roy, J. Appl. Phys.125, 023902, (2019)

Micro-patterning of MEMS scale PMs

Soft magnetic mask – pulse magnetization method

Magnetic North / South Array

Magneto optical Characterization:

magnetizing mask wafer

> magnetic film wafer

Soft-magnetic mask fabrication

- NdFeB, CoPt PMs
- FeCo SM (Bsat = 1.3T)

Concerns:

- Pulse reversal field dependent on coercivity of PMs
- Diffraction during reverse pulse magnetization

O. D. Oniku et al., J. Appl. Phys., 115, 17A718 (2014)

Optimization of the magnetic structures in terms of interspacing and aspect ratio of the array

Four novel topologies for the MEMS EM-VEH

Topology	Υ with Square coil (mWb/m)	Υ with Rectangular coil (mWb/m)
First	2.40	10.18
Second	6.79	18.73
Third	16.21	39.40
Fourth (20µm SM)	32.60	53.03

- IEEE Power-MEMS: K Paul, D Mallick, S Roy; Dec (2019)
- IEEE Mag Lett; K Paul, D Mallick, S Roy; 12, 1-5, (2021)

Roadmap for Integrated EM VEH Devices

Invited Article: S Roy et al; IEEE Trans. Mag. 55, 4700315, (2019)

Performance of linear and nonlinear MEMS EM-VEH

Reference	Volume (mm³)	Accelerati on (g)	Resonant/ Bandwidth	Power density
[Han 2014]	67.5	1.2	Resonant peak 48Hz	0.16µW/cm ³
[Liu 2013]	35	1	Resonant peak 840Hz	0.15µW/cm ³
[Liu 2014]	32	3	Resonant peak 82Hz, extended up to 146.5Hz	0.056 µW/cm³
This work, linear EM- VEH	50	1	Resonant peak 614Hz, bandwidth 4Hz	52μW/cm ³
This work, Nonlinear EM-VEH (spring-c)	60	1	Non-resonant, bandwidth 25Hz (921- 946Hz)	7.73µW/cm ³

Performance comparison of state-of-the-art MEMS EM-VEHs

Power Conversion employing micro-nano-magnetics

Evolution of Integrated Power Magnetics

Separate bobbins, windings, cores

Switch Mode Power Converter

Planar PCB Magnetics

Vin Ql Dl Dl Ul UlUl

- Allowed current ripple;
- $\Delta i = (Vin Vtrans Vout)D/(Lf)$
- where : D = duty cycle, L= inductance, f = switching frequency.

For small L & high Efficiency- need high f

PCB Integrated Magnetics

Integration of magnetics

Integrated Passives on Si

Magnetic Material - Losses

- Hysteresis Loss
 - Arise from domain wall motion
 - Area within **B-H** loop
 - $P_{hysteresis} = 4. f.B_{ac}^{2} H_{c}/B_{sat}$

Where; H_c = coercivity, B = Magnetisation, H = Magnetising field, f = frequency

- Eddy Current Loss
 - Eddy currents resist change in magnetic field
 - Reduced by keeping thickness below 1 or 2 skin depths
 - Skin depth, $\delta = (2\rho / \omega \mu_r)^{0.5}$

Where; ρ = resistivity, ω = angular frequency (= $2\pi f$)

Anomalous Loss

- Inconsistencies in domain wall motion
- Often calculated as; $P_{total} = P_{hysteresis} + P_{eddy current} + P_{anomalous}$

Targeted Properties for High-frequency magnetic materials

- Coercivity (Hc) < 2 Oe
- Permeability (μ_r) 300-1000
- Saturation Flux density (Bs) 1.5- 2.4T
- Resistivity (ρ) 30-500 μΩcm
- Cut-off frequency for eddy current loss (fed) 100-500 MHz
- Anisotropy field (H_k) 10-500e
- Natural ferromagnetic resonance frequency $(f_{FMR}) 1-3$ GHz

Pulser & Pulse Reverse Plating of Magnetic Core Layers

Nanocrystalline NiFe precessional dynamics

Ni₄₅Fe₅₅

Sputtered CZTB Laminated Stack

Saturation, B _s	1.2 T
Coercivity, H _c	5 A/m
Resistivity, ρ	115 μΩ
	cm
Permeability, μ_r	490

- Lower Hc => lower Hysteresis loss
- Higher resistivity => Lower eddy current loss
- Better frequency performance

Lesker multi-target sputtering machine has been installed lately within * Tyndall cleanroom with ~ €1M SFI Infrastructure grant to S Roy

Solenoid Micro-Transformer with laminated core

Laminated CZTB/AIN magnetic core

Section of solenoid structure

Advantages of a solenoid construction:-

- Laminated core fabricated on a single layer (unlike a closed core which requires two layers) => Lower cost
- No magnetic via required to connect top and bottom magnetic layers

Devices prior to final passivation

Roadmap: Future Direction

MEMS EM-VEH & conversion enabled by Micro/Nano-magnetics \rightarrow Powering Internet of Things (IoT)

Acknowledgement:

People:

Kankana Paul Jeffrey Godsell Pranay Podder Brice Jamieson Ningning Wang Paul McCloskey Dhiman Mallick Santosh Kulkarni Seamus O'Driscoll Peter Constantinou Tyndall Fab Facilities

Funding:

- EU H 2020 EnABLES EU - FP6, FP7, FET Flagship Pilot SFI PI grant Award (2012) - 11/PI/1201 SFI TIDA grant award (2016) –16/TIDA/4174 SFI Capital Infrastructure (2013) -12/RI/2342 SFI Research Center- CONNECT- (2015 -Onwards) <u>Major Collaborators:</u> Prof. Andreas Amman - UCC, Ireland Prof. Terence O'Donnell- UCD, Ireland
- Prof. Steve Beeby Univ. of Southampton, UK
- Prof. Cian O'Mathuna Tyndall Institute, Ireland

THANK YOU

