Energy Storage: A Nanoscale View

Nina Balke North Carolina State University

EnerHarv 2022

PSMA International Energy Harvesting Workshop 5-7 April 2022, Raleigh, NC, USA

ninabalke@ncsu.edu

Acknowledgement

Office of Science **Basic Energy Sciences**

Outlook

Motivation

Energy storage concepts
The nanoscale challenge
The importance of strain

Atomic Force Microscopy

o Limitations and opportunities

Case studies

Porous electrodes
Layered electrodes
Transition metal oxides

AFM Modalities in Energy Storage

Summary

Energy Storage

From adsorption to ion insertion

Energy storage devices

EDL capacitor

- Electrostatic charge storage (adsorption)
- No charge transfer

Pseudocapacitor

- Electrochemical charge storage (surface)
- Charge transfer

Battery

- Electrochemical charge storage (volume, intercalation)
- Charge transfer

R.M Penner and Y. Gogotsi., ACS Nano, 12, 2081 (2018).

The Nanoscale Challenge

Processes on different length scales determine energy storage performance.

In order to optimize battery functions, the role of interfaces, microstructure, and defects in the electrochemical process need to be investigated.

Images: Edwin Garcia, Purdue University; Shao-Horn, Solid State Ionics 2001; Shao-Horn, Nat. Mat. 2008

Atomic Force Microscopy

Use AFM to reveal nanoscale processes in energy storage

PRO:

- Nanoscale resolution (10's of nm)
- Volume changes
- Mechanical stiffness (Young's modulus)
- Local potential
- Electrical current

CON:

- Baseline drift (min)
- Liquid damping
- Electrochemical cell design*

In situ Electrochemical Cell (Asylum Research)

Atomic Force Microscopy

Challenges to transfer electrochemical methods to the nanoscale

- Very small contact area between AFM probe and sample \rightarrow tiny currents
- Liquid environments prevent local probing

Development of shielded probes

Measurements with a biased tip in liquid challenging \rightarrow restricted to measurements in air

Chemical Expansivity

Challenge for nanoscale:Solution:Standard electrochemical
measurements detect current;
Faradaic and ionic currents are
small (scale with volume)Solution:• Use chemical expansivity in electrochemical reactions to study local
phenomena (electromechanics)• Use chemical expansivity in electrochemical reactions to study local
phenomena (electromechanics)• Ion concentration is strongly coupled to a local change in strain (new
measurement paradigm)

Amatucci et al., J. Electrochem. Soc. (1996)

Chemical expansion in oxides

Universal feature in many ionic processes.

The Importance of Strain

Strain is an integral part of energy storage

Typically discussed in the context of

- Battery materials
- Mechanical degradation
- Monitoring state of charge

What we want

- Minimized volume
 changes
- Isotropic volume
 changes

The Importance of Strain

Strain as a design concept to achieve high power and high energy

Energy and power density are tightly coupled:

 A device that provides high energy density typically undergoes significant structural transformations

more reaction

 Energy storage reaction with lower capacity show more gradual structural changes

Hypothesis: Coupling between electrochemical reaction and structural deformation is a pathway to enable simultaneous high power and high energy.

Nanoscale Strain Detection

Static Electrochemical Strain Microscopy (ESM)

- Operando technique (electrochemical cell)
- SPM tip as passive strain sensor
- "Nanoscale dilatometry"
- Mapping capabilities with 10's of nm resolution

working electrode (raised)

Electrochemical Cell (Asylum Research, MFP 3D)

counter electrode

filled with electrolyte

Porous EDL capacitor

U 0 F₃C-S-N-S-CF₃ 0 0

Mesoporous carbon membranes (~20µm thick)

EMIM: 0.85×0.5×0.28 nm³

Tf₂N: 1.09×0.51×0.47 nm³

Diff. Pore Volume [cm³/g nm] 0.00

0.05

Emim-Tf₂N ionic liquid as electrolyte

Black et al., Adv. Energy Mater.	4,	1300683	(2013)
----------------------------------	----	---------	--------

	BET Surface Area (m²/g)	Young's Modulus (GPa)
Graphitized	282	9.66

 CH_3

Porous EDL capacitor

Electrosorption and transport: scan rate dependence

- Ions are not reaching the adsorption equilibrium because of transport limitations (Equilibrium condition: Phase shift between bias and strain = 0)
- Anions (bigger) are limiting kinetics

Layered Electrodes

MXene: $Ti_3C_2T_x$ ($T_x = O, F$)

- Metallic conductivity
- Negative surface charge

Aqueous sultate electrolytes			
	lonic radius (Å)	Hydrated radius (Å)	
Li+	0.76	3.40	
Na+	1.02	2.76	
K⁺	1.38	2.32	
Mg ²⁺	0.72	4.40	

J. Come et al., Nano Energy 2015, 17, 27

- Contraction instead of ٠ expansion
- No volume change for K⁺
- Largest volume change ٠ for Li+

Higher Li⁺ strain \rightarrow slower intercalation kinetics

Layered Electrodes

Theoretical insights

Where do the cations go and how do they interact with water and MXene?

Most relevant properties

- Hydration shell radius
- Coordination
 number
- Distance to MXene

Gao et al., Energy Environ. Sci. 13, 25449, 2020

15

Layered Electrodes

Theory and experiment can explain charge storage properties

Gao et al., Energy Environ. Sci. 13, 25449, 2020

Redox Reactions

 WO_3 in H_2SO_4

17

Redox Reactions

Mechanical cyclic voltammetry (mCV)

18

General Application of mCV

Towards physical identification of redox peaks

AFM Modalities in Energy Storage

Summary

- Electrode strain due to ion intercalation/insertion relevant for lifetime, electrochemical performance, and local ion detection
- AFM can detect electrochemical strains in a variety of energy storage materials (EDL to batteries)
- Mechanical CV curves can detect local deformation processes and are directly related to electrochemical current
- Universal in-situ approach working across many materials
- Potential applications towards single particle
 electrochemistry

