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Thermoelectric generators

Properties
 no moving parts
 DC-like currents, however…
 polarity changes with                                            

the direction of the temperature field
 very low to fair output voltages (10 mV … V)
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Maximum electrical output power

Example calculation for a mesoscale TEG

TEG: thermalforceTM TEG 049-150-30
 material system:            Bi2Te3

 internal resistance:        Rg,eff = 0.57 Ohm
 Seebeck coefficient:      S = 16 mV/K
 dimensions:                   25 x 25 x 3.7 mm³

Assumptions
 temperature difference ΔT = 10K
 ideal - and nonrealistic - thermal interface
 electrical load matching,                                  

i.e. = RL = Rg,eff
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Thermal and electrical interfaces  

Influence on output voltage  
and output power

TEGthermal interfaces
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Thermal and electrical interfaces  

Thermal „feed factor“ f
 parameter for the thermal temperature 

divider at the TEG and its interfaces
 0 < f < 1: The higher f the better

Electrical „delivery factor“ d
 parameter for the electrical voltage divider               

at the TEG output
 0 < d < 1: For maximal power output dopt = 0.5
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Influence of the thermal interfaces

Practical example: TEG in a solid-air interface

Heat sink: Fischer ICK S
1.5 K/W  …  4.5 K/W
depending on air convection

TEG 049-150-30
5.263 K/W Wacker P12  (50 µm thick)

2 x 0.1 K/W
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Influence of the thermal interfaces

Example calculations 

0

2

4

6

8

10

0

50

100

150

0 1 2 3 4 5

m
ax

. o
ut

pu
t p

ow
er

 [m
W

]

Se
eb

ec
k 

vo
lta

ge
 [m

V]

air speed [m/s]

acceptabe ΔT = 10K very low ΔT = 1K

Useebeck [mV] Pmax [mW] USeebeck [mV] Pmax [mW]

low convection (0.5 m/s) 83.9 3.1 8.39 0.031

forced convection (4.5 m/s) 121.8 6.5 12.18 0.065

2

,

2
2

max 4
1 T

R
SfP

TSfU

effg

Seebeck

Δ⋅⋅⋅=

Δ⋅⋅=



Peter Woias, EnerHarv 2018, Cork, Ireland, 29.05.2018 -8-

Influence of the electrical interface

Output voltage and power for various load resistances and ΔT = 10K
 low output voltage (10…100 mV)
 low-voltage step-up                                                                                                   

conversion is mandatory
 reasonable output power (mW…10 mW)
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Influence of the electrical interface

Output voltage and power for various load resistances and ΔT = 1K
 very low output voltage (mV...10mV)
 very low-voltage step-up                                                                        

conversion  is mandatory
 very low output power                                                                                    

(10 µW…100 µW)
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Total system power output

Low output voltages (e.g. 100 mV) are not sufficient to 
power up an electronic system. A low-voltage step-up 
converter is required to boost the TEG output voltage 
up to an acceptable level (e.g. 2 V)

Power losses in the step-up converter
 low efficiency at low input voltages (in many cases 25 % or less)
 minimum start-up voltage required (best commercial device: 20 mV in 2011)

 consequence: No harvesting at „really low temperature gradients“
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Low voltage (LV) step-up converters

Design issues
 high step-up ratio S
 high power conversion efficiency η
 cold-start from low voltages Uin, min

 self-supply from low input voltages
 matched electrical impedances of TEG and converter input, for d ~ 0.5
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Power conversion efficiency                               
of „usual“ low-voltage step-up converters

Resumee
 optimal power conversion only for a fixed input voltage Vin.
 not ideally suited for variable input voltage.
 minimal start-up voltage limited to 20 mV (today, with reasonable effort).

datasheet  Linear 
Technology LTC 3108

N. V. Desai et al., Proc. 
ISLPED 2014, 221-226
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Our own LV step-up converter (patented)

Properties
 combination of a Meissner oscillator and forward converter
 start-up voltage of 10 mV is possible (reasonable: 20 mV)
 power conversion efficiency above 50 % at 20 mV Uin (most recent results)
 no influence of input voltage on conversion efficiency

P. Woias et al.,           
J. Phys. Conf. Ser.
476, 2013, 012081.
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Temperature regimes                                 
and design considerations

Resumee
 In general: make output voltage Uout and output power Pout high 

enough, save on power in the electronic system
 high S = high-efficiency TEG
 high f =  thermal interfaces with good heat conductance
 d = 0.5 (load-matched electrical interface) for max. power

 For a small ΔT:  use high-efficiency thermoelectric materials !
establish a ΔT as large as possible !

 For a large ΔT:  even a „bad“ thermoelectric material may be sufficient !

Output power ~ (Seebeck · ΔT)² 2
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Small ΔT applications

Boundary conditions
 small ΔT: one to a few Kelvin
 small heat flux
 highly dynamic fluctuations of both

Home 
automation

Human, biomedical, …

Automotive

Infrastructure  
monitoring

© PMDM



Peter Woias, EnerHarv 2018, Cork, Ireland, 29.05.2018 -16-

Small ΔT: Energy-autonomous sensors                       
in railway and road tunnels

What for ?
 traffic monitoring
 environmental monitoring
 detection of accidents,                                                  

explosions, earthquakes,…
 structural health monitoring

Available energies                                                      
in a tunnel ?

railway tunnel car tunnel
thermal   
sound    
vibration  
airflow  
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Geothermal energy harvesting in tunnels?

Concept
 thermal probe embedded in the tunnel wall
 thermoelectric energy harvesting                                                 

between the (cold ?) tunnel bed                                                               
and the (warmer ?) wall surface

But first: measurement                                   
of the available ΔT
 temperature profile in the wall
 surface and air temperature
 wind speed

thermal probe with integrated 
thermogenerator (conceptual drawing)
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Road tunnel: field measurements

Results
 predictible temperature profile in the wall
 highy dynamic air temperature
 influence of weather and traffic density
 small temperature gradients (1…2 K)
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Hugenwald tunnel, 
Freiburg, Gemany
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Thermal time constants

( ) ( )[ ] 2~ tTtPP outout Δ=

temporal behaviour of ΔT² does also define the output power

thermal time constant τ:

τ = KHS  CHS
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Energy harvesting from low ΔT in a tunnel

HSHS CK ⋅=τ

TEG KHS [K/W] τ [s] E [J/day]
1 8.3 239 1.74
2 8.5 374 1.32
3 2.8 402 0.87
4 4.9 416 0.68

A. Moser et al., Proc. PowerMEMS 2010, Leuven, Belgium,  431-434.

U = 20…60 mV
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Energy harvesting from low ΔT in a tunnel

A. Moser et al., Journal 
of Electronic Materials 
41 (6), 2012, 1653-1661.

Results
 harvesting of 0.07 J/day,                                                        

from ΔT ≥1.2 K at the TEG over appr. 20 hrs
 415 energy-autonomous radio telegrams per day         

(200 µJ per telegram, average interval: 3.5 min)
 wireless system: Enocean transmitter

active
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Wall-mountable modular sensor system

A. Moser et al., Journal 
of Electronic Materials 
41 (6), 2012, 1653-1661.
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Medium ΔT applications

Boundary conditions
 acceptable ΔT: at least 10s of Kelvin
 reasonable heat flux
 moderate dynamics of both

Automotive

Fabrication

Process control

© ABB
© Citroen
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Energy-autonomous sensors                                     
in automotive applications

What for ?
 tire pressure monitoring
 engine monitoring and control

(oil and water cycle, knocking…) 
 tire rotation sensors …

Available energies at/in a car or truck ?
 light
 movement
 acceleration
 heat and cold
 sound
 vibration
 gas and liquid flow
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First measurement campaign:
Thermal budgets in/around a car engine

fan: air inlet

radiator: 
water inlet

radiator:           
air outlet

manifold

motor cabinet:              
air temperature

motor block                
(at cooling outlet)

ambient air

TEG module at             
the motor block

Peugeot 306 (2000),  
90 PS, gasoline

PT 1000
temperature sensor
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Miniaturized TEG module

heat 
exchanger

thermal 
connector to 
motor block

TEG:
nα = 4 mV/K
Rg = 0,21 Ohm

Pt 1000        
(hot side 
temperature)

electric 
connector

Pt 1000               
(air temperature)

TEG module

motor block
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Exemplary measurement results

Resumee
 high output power (a few mW),                                   

but low output voltages (a few 10 mV)
 obvious influence of car speed
 significant harvesting after the end of a journey
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Cold-start delay and conditions ?

Resumee (for a small commercial TEG)
 100 µWs of output power available after a few minutes

a small TEG = sufficient for low-power wireless sensors only
 low-voltage step-up required     “starting from as low as possible”
 higher output power required for realistic application scenarios
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Second measurement campaign:
A larger TEG in a modern car

fan: air inlet

TEG + heat sink
nα = 30 mV/K Rg = 0,89 Ohm

B

A

C

D

E

G
A: tip of oil level dip stick
B: cooling manifold
C: radiator support (top)
D: radiator support (bottom)
E: motor compartment air
G: exhaust surface temperature
H: chassis bottom (ambient air)

datalogger

Citroen C3 Picasso blueHDI 100 
(2016), 100 PS, diesel engine

P. Mehne et al., J. Phys.               
Conf. Ser. 773, 2016, 012041.
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Typical measurement results:
Engine compartment

Results
 much lower temperatures in modern cars (2016) vs. elder cars (2000)
 substantial heat-up of the engine compartment at the end of a ride   lower ΔT
 nevertheless potential for energy harvesting

engine on engine on
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Typical measurement results:
TEG at the exhaust pipe

engine on
Results
 very high output power (up to 1 watt)
 significant start-up time (several minutes)
 requirements:
 step-up converter with vey low start-up voltage
 system electronics with low power draw (especially the wireless interface)

load resistance at TEG:    
RL = 3.89 Ohm
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Energy-autonomous temperature sensor 
at the exhaust pipe

System design and power consumption

Resumee
 start-up at 20 mV input voltage (with an Enocean ECT 310 step-up converter)
 stable operation already with the car in idle mode
 however: further optimization required 

part type current energy power

start-up switch MIC833 1 µA ~ 4 µW

microcontroller MSP430F5529 a few µA ~ 10 µW

bluetooth module BLE112 4.5 mJ/telegram 4.5 mW

P. Mehne et al., J. Phys.               
Conf. Ser. 773, 2016, 012041.
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High-temperature and ΔT applications

Boundary conditions
 high temperatures: 100s of Kelvin
 high ΔT: 100 to 100s of Kelvin
 reasonable to high heat flux
 low dynamics of both (usually          

huge thermal masses involved)

Gas and aircraft turbines

Highly energetic         
combustion processes

High-power geothermy
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High-temperature applications:                             
a gadget example ?

BioLite 2® thermoelectric                                                                            
energy harvesting stove

Properties
 cold temperature level decreased 

via active convective cooling
 average electric power: 3 W
 integrated battery (2.600 mAh)
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High-temperature applications:                             
What TEGs are needed to power WSNs ?

Resumee
 T is high  high-temperature thermoelectric materials required

 a „bad“ thermoelectric material may be „good enough“
 reduced requirements on system design (step-up converter)

Choice of termoelectric materials
 high-temperature semiconducting thermoelectrica: PbTe, SiGe, MgSi,…
 Why not metals ?

 Output power ~ (Seebeck · ΔT)²( )212

2
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R
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… but also: at least T2 is high
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High-temperature                               
thermoelectric Materials

Why metal TEGs ?
 very small Seebeck coefficient   
 high operational temperature      
 very robust systems                    
 raw materials readily available   

Typical Seebeck coefficient Melting point
Copper 6.5 µV/K 1085 °C
Constantan (Cu55Ni45) -35 µV/K 1280 °C
Bi2Te3 ~ 200 µV/K 573 °C
PbTe ~ -100 µV/K 905 °C
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Copper-constantan TEG:                          
Theoretical case study

Device specification
 temperature difference                                          

at the TEG:                     100K
 min. output power:   ~100 mW
 thermal heat flux:    ~100 Watt

Number of thermocouples 241
Seebeck coefficient (generator) 10 mV/K
No load output voltage 1.0 V
Loaded output voltage 0.5 V
Max. output power

too optimistic: RC = 0 mOhm 236 mW
realistic:          RC = 1 mOhm 192 mW

Thermal heat flux through TEG 100.78 W
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Summary and conclusions

Thermoelectric energy harvesting is promising – and feasible – for 
harvesting from thermal reservoirs with high and/or low heat fluxes                    
and temperature differences.

In any case, a thorough system design is required, by tailoring ….
 the TEG itself, and its thermal interfaces,
 all power management electronics,
 the connected wireless sensor node.

Primary requirements and needs for further R&D are …
 a realistic determination of energy densities available for harvesting,
 improved power management electronics,
 power-optimized wireless data transmission,
 a solution for the “low-ΔT-start-up”.
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Thank you very much for your attention
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Don‘t miss …

PowerMEMS 2018,
Daytona Beach, USA
 December 04-07, 2018
 abstract submission open
 deadline: July 17, 2018

Special session on:
“PowerMEMS in action”
… with working life demos

www.PowerMEMS.org


