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ASSIST vision

ASSIST’s vision of health and 
wellness is enabled by its 

disrup ve system features 

Self-Powered/Ultra Low Power 

Wireless 

Hassle-Free/Comfortable 

Medically Validated 

Non-invasive/minimally invasive  

Mul -modal health and 
environmental sensors 

Long-term monitoring of 
personal health & 
environment enabled by 
always-on pla orms 

Sophis cated picture of health 
via correla on of mul ple 
sensors 

Enable a pathway towards 
personalized medicine 
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Heat - Thermoelectric
Motion - Piezoelectric



ASSIST
Roadmap
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ASSIST Low-Power Sensor 
Technologies

Long term monitoring of 
environmental exposures & health

Detection
Wheeze / Cough

Critical Data Correlation
Ozone / Respiratory & 

Cardiac Health

HET 1
Asthma Management

ECG PPG VOC Ozone 

Critical Data Correlation
Food Intake - Glucose / Lactate 

Levels & Uric Acid - Wound Health

HET 2
Diet Management & 

Wound Healing

Wound Fluid ISF Sweat 

Non-Invasive Glucose/Lactate & 
Wound Health Monitoring

Glucose Lactate Uric Acid
pH Breathable Materials

ASSIST Zero-Power Extraction and 
Transportation Technologies

ASSIST Low-Power Detection 
Technologies

Critical Data Correlation
Medication Intake & Physiological 

Parameters from HET 1.0 & 2.0

Sweat 

Non-Invasive Medication Detection

Monitoring of Medication Intake

ASSIST Zero-Power Extraction and 
Transportation Technologies

ASSIST Low-Power Detection 
Technologies

ISF 

HET 3
Medication Adherence

Vigilant ECG (R-R) and Motion

Critical Data Correlation
A-Fib and Activity Identification 

Optimized for Low-Power

SAP 1
Cardiac Health

ECG AFE

ASSIST Energy Harvesting and 
Low-Power Circuit Technologies

SoC & Radio
SupercapacitorsEnergy Harvesting 

SAP 1.0 + HET 1.0

Critical Data Correlation
 HET 1.0 and Pulsed Transit Time 

Blood Pressure

SAP 2
Cardiac Health, Blood 

Pressure & Asthma

Ozone

ASSIST Energy Harvesting, Sensor 
& Low-Power CircuitTechnologies

PPG
Energy Harvesting

ECG VOC

SAP 2.0 + HET 2.0

Critical Data Correlation
Metabolic Changes & 

Cardiac Health

SAP 3
Cardio-Metabolic Health

Ozone

ASSIST Energy Harvesting, Sensor 
& Low-Power CircuitTechnologies

PPG
Energy Harvesting VOC

ECGBiomarkers < Sweat/ISF
BP

Health and 
Environmental 
Tracker

Self-Powered 
Adaptive Platform



Harvesting Heat from the Body

The application imposes large thermal resistances

Flexible thermoelectric generators 
(TEGs) are desirable:
● Conformal to the body

● Better contact with the skin

● Large area harvesting
● Simple Integration

● Electrical resistance

● Aesthetics

Skin
Resistance

Contact
Resistance

Flexible Heatsink &
Small Form Factor

Heat

Lateral
Heat Spread

Heat Flow
through Filler

Vertical Heat Flow
Through Polymeric Substrate
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Harvesting Heat from the Body

Key Challenge: Small ΔT across the harvester

Skin
Resistance

Contact
Resistance

Flexible Heatsink &
Small Form Factor

Heat

Lateral
Heat Spread

Heat Flow 
through Filler

Vertical Heat Flow
Through Polymeric Substrate
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Our approach to Flexible Thermoelectrics
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● Bulk thermoelectric materials
● Best materials used in rigid TEGs

● No new material development

● Pick-and-Place Tooling
● Standard technique

● Flexible packaging
● Material Innovations

Ag/AgCl

Ag Nanowires

EGaIn

A flexible approach with a low cost-of-ownership that 
can rival the performance of rigid TEGs



Eutectic Gallium Indium (EGaIn)
Gallium Indium

+ =
30 °C 157 °C 16 °C

Liquid
• Low viscosity
• Low toxicity
• Near-zero vapor pressure

Adv. Fun. Mat. 2009

Can be encapsulated by an 
elastomer

Adv. Mater. 2016
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TEG Fabrication with EGaIn Interconnects
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TE Leg PDMS

1.31mm

1.45mm

EGaIn

TEG with liquid 
interconnects

PDMS 
Encapsulation

Suarez at. Al, Flexible thermoelectric generator using bulk legs and liquid 
metal interconnects for wearable electronics, Applied Energy, 2017



-5
0
5

10
15
20
25
30
35
40
45
50

0 0.5 1
M

ea
su

re
d 

Po
w

er
 (µ

W
)

Air Velocity (m/s)

5°C

22°C

32°C

Testing on the Human Body
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Promising performance despite
• No heat spreaders
• No heatsink
• Thick PDMS encapsulation



Mechanical Testing
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Mechanical Testing
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10mm 35mm

• Low Resistance - negligible contribution from interconnects
• Spikes recovered due to “self-healing” nature of EGaIn



Further Improvements
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Thin Metal 
Spreaders

Reduction of Filler Thermal Conductivity

Thinner Top and 
Bottom 

Elastomers &
Higher Thermal 
Conductivity

Taller Legs



Printing and Spray Coating of EGaIn

● Printing provides faster and more reliable interconnects on TEGs 
with large leg count

● Spray coating of encapsulation provides a much thinner 
encapsulation 13



Flexible TEG with 256 legs & 
Spray Coated Encapsulation
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Alumina doped PDMS

Al2O3, AlN, and BN Doped PDMS
Increasing the thermal conductivity of the encapsulating layer

153X enhancement can be achieved in the thermal conductivity of PDMS
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Material Thermal Conductivity Powder size

Al2O3 Powder ~35 W/mK ≤10 µm

AlN Powder ~150 W/mK ~10 µm

BN Powder ~30 W/mK ~1 µm
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Output Power – Device characterization on the 
wrist – Impact of time on the wrist
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3X improvement in performance with
• Thin PDMS encapsulation
• Al2O3 doped PDMS top/bottom layers

Still… No heatsink or heat spreaders

Time on body: Time on body: Time on body:



Device characterization on the wrist
Voltage, Temperature Differential and Power
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Benchmarking (w/o Air Flow)
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Further Improvements – COMSOL simulation
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Low Thermal Conductivity Elastomer

Air bubbles

Aerogel Particles

Aerogel Islands

A low thermal conductivity elastomer between 
the legs can increase the power by ~ 2X



Graphene/EGaIn Doped Elastomer
● Our approach was elastomer 

doping with high thermal 
conductivity particles

● We have tried
● Al2O3, AlN, BN, Graphene and 

EGaIn

● Best results were obtained with 
EGaIn + Graphene Doping

● 0.85 W/mK (5.6X improvement)

● We can increase the 
encapsulating thickness to 200 um 
without paying significant penalty0
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50um 1W/mK elastomer
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3D COMSOL Modeling
(Natural Convection)

Graphene 
percentage

PDMS + 
Graphene

PDMS + EGaIn
+ Graphene

2.2% 0.602 W/mK 0.838 W/mK

4.3% 0.652 W/mK 0.853 W/mK

6.3% Cannot measure 0.871 W/mK



Improved TEG design

P N P N P N P

Low Thermal Conductivity
Elastomer

Nanocomposite
BiTe Legs

Low-Resistivity
EGaIn Interconnects

High Thermal Conductivity
Elastomer

Titanium
Gold

Copper Heat Spreader

Spray Coated
Thin Elastomer



Conclusions

● EGaIn provides 
● Printable, low-resistivity, stretchability

● Self-healing, reliability

● Room-temperature bonding to TE legs

● There is still much room for improvement
● Thermal management - Device packaging and materials
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There is potential for producing flexible TEGs that rival the 
performance of rigid TEGs 
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